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ABSTRACT

Existing pitch curve generators face two main challenges:
they often neglect singer-specific expressiveness, reducing
their ability to capture individual singing styles. And they are
typically developed as auxiliary modules for specific tasks
such as pitch correction, singing voice synthesis, or voice
conversion, which restricts their generalization capability. We
propose StylePitcher, a general-purpose pitch curve generator
that learns singer style from reference audio while preserving
alignment with the intended melody. Built upon a rectified
flow matching architecture, StylePitcher flexibly incorpo-
rates symbolic music scores and pitch context as conditions
for generation, and can seamlessly adapt to diverse singing
tasks without retraining. Objective and subjective evaluations
across various singing tasks demonstrate that StylePitcher
improves style similarity and audio quality while maintaining
pitch accuracy comparable to task-specific baselines.

Index Terms— F0 Estimation, Singing Voice Synthesis
and Conversion, Pitch Correction, Rectified Flow Matching

1. INTRODUCTION

Pitch curves, or fundamental frequency (F0O) curves, are the
backbone of expressive singing. They encode not only the
melody but also the subtle variations that define unique styles
of different singers, such as their vibrato, ornaments, pitch
bending, and others [1]]. Therefore, pitch curves serve as crit-
ical intermediate representations across diverse singing gen-
eration and conversion tasks, such as automatic pitch correc-
tion (APC) [2-4], singing voice synthesis (SVS) [5H10], and
singing voice conversion (SVC) [11517].

Despite their importance, existing approaches face two
main limitations. First, most of them overlook singer-specific
styles encoded in pitch curves, treating pitch as a singer-
agnostic feature and reusing the same curve across different
singers [[11}/12]. This limitation is critical: the same melody
sung by different singers can produce distinct pitch patterns,
which reflect individual singing techniques and styles. Losing
these patterns will neglect their singer-specific expressiveness
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and the essence of their performance [[8]. Second, while some
recent approaches [4,9]] support style-informed pitch curve
generation, they often develop the pitch curve generator as
an auxiliary module for specific tasks, such as pitch correc-
tion [4] and singing voice synthesis [9]. This task-specific
design constrains their generalization capability across differ-
ent singing applications, as researchers have to retrain these
modules with different hyperparameters, inputs and outputs
for each adaptation. Therefore, a general-purpose model ca-
pable of generating style-following pitch curves is essential
for diverse singing applications.

We propose StylePitcher, the first style-following pitch
curve generation model for versatile singing tasks. We for-
mulate pitch curve generation as a masked infilling prob-
lem: given surrounding pitch context and symbolic music
scores, StylePitcher learns to generate missing pitch seg-
ments that continue the style patterns from context. This
approach enables implicit style modeling without requiring
explicit singer labels or embeddings, allowing generalization
to unseen voices. We employ a rectified flow model [18]]
for stable, efficient, and high-quality generation process. In
addition, we introduce a smoothing algorithm to construct
reliable conditioning signals (i.e., symbolic music scores),
removing the need for manual annotations. By separately
modeling FO and performing inpainting, StylePitcher gen-
erates pitch curves that follow the style of provided audio
without any task-specific retraining. Once trained, it serves
as a plug-and-play module for diverse applications, including
pitch correction, zero-shot singing voice synthesis with style
transfer and style-informed singing voice conversion.

Our contributions are threefold:

. StylePitche is the first general-purpose, style-following
pitch curve generator supporting diverse singing tasks.

* We introduce a flow matching architecture to pitch curve
generation, a smoothing algorithm for data annotation, and
an inpainting mechanism for flexible task adaptation.

* Objective and subjective evaluations across multiple singing
tasks show that StylePitcher achieves superior or compati-
ble performance on style similarity, audio quality and pitch
accuracy relative to previous baselines.

'Demos available at https://stylepitcher.github.io/
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Fig. 1. Tllustration of the methods. The unvoiced condition is omitted for clarity. Subscripts of £ and in denote features from
off-key and in-key singing in the APC task; ref and tgt refer to reference and target content for SVS and SVC tasks.

2. RELATED WORK

Many singing generation frameworks explicitly predict pitch
curves as an intermediate step. In automatic pitch correc-
tion, models generate pitch contours conditioned on target
note sequences to correct out-of-tune vocals [2H4]. Singing
voice synthesis aims to generate singing voice from lyrics
and scores, with many approaches predicting FO to model
pitch variation [5H8L{10]. Specifically, StyleSinger [9]] adopts
style-specific and style-agnostic pitch predictors to capture
singing styles from references. Singing voice conversion
models transform the voice in a singing signal into that of
a target singer while preserving content and melody. Most
existing works [[11H17] treat pitch as singer-agnostic, reusing
the unchanged or key-shifted FO sequences from the original
singing, which converts timbre but overlooks singer-specific
expressiveness. Unlike prior works that embed task-specific
FO predictors within complex frameworks, the proposed
StylePitcher is a plug-and-play module for diverse singing
tasks, supporting style preservation or transfer as needed.

3. METHODS
3.1. Rectified Flow

Rectified flow [18]] defines generative modeling as learning a
deterministic transport map from a prior distribution 7 (e.g.
Gaussian) to the data distribution 7r;. It parameterizes a time-
dependent velocity field vg (x4, t, ¢) to push z¢ ~ 7o towards
x1 ~ w1 under the ordinary differential equation (ODE):

dxy = vo(x, t, c)dt €))
where ¢ denotes conditions, ¢ € [0, 1] is the scalar time pa-
rameter, and x; follows a rectified linear interpolation:
xe = (1 —t)xg + tz1. 2)
The model is trained with the flow matching objective:
L(0) = Epymmg,mrmmtellvo(@, t,c) — (x1 — zo)|3. (3)
Once trained, starting from 7, samples from 7; are obtained

by integrating the learned ODE from ¢t = O to ¢ = 1, produc-
ing high-quality results with few sampling steps.

3.2. Model Architecture

As illustrated in Fig. [I, we formulate pitch curve genera-
tion as a conditional infilling task, following Voicebox [19].
Given a fundamental frequency curve x = (z!,---,z%)
from a singing voice, the corresponding note sequence
y = (y',---,y"), and a binary mask m € {0,1}%,
our model p(Zmask|y, Tex) predicts the masked segments
Tmask = M © x conditioned on the complete note sequence
y and the context zx = (1 — m) ® x. Through in-context
learning, the generated segments implicitly follow the singing
style of the surrounding context remaining aligned with the
target musical score.

We adopt rectified flow with a diffusion transformer [20,
21]] to parameterize the velocity field vg(z¢, ¢, y, Zcx ), Where
the full signal = is modeled instead of x,,s for simpler con-
ditioning, and x; is the linear interpolation between noise
e ~ N(0,1) and x at flow matching step ¢.

Specifically, the pitch curves x; and x. are linearly pro-
jected to embeddings of shape (N, H; = 512), and notes
y € [M]" are projected to (N, Hy = 256), where M is the
number of pitch classes. These three embeddings are con-
catenated along the frame dimension and projected to the em-
beddings for next layers. Additionally, an unvoiced indicator
sequence u € {0,1}" is incorporated to align the generated
FO with singing phonemes. Finally, a sinusoidally positional-
encoded flow step ¢ modulates the representation to form the
transformer input.

The training objective is:
£pitch(9) = Ee,p(z,y),t,m”mQ[U@(xtv t7 Y, xclx) - (.’17 - 6)] ||%

“)
where the loss is computed only on masked frames [19].
Classifier-free guidance (CFG) [22] is employed by ran-
domly dropping conditions y, x., and u with probability
p. for training. During inference, samples are generated by
integrating the ODE for K steps with modified velocity field
vy and CFG scale «:

69 - ’Uﬂ(xt;tvg) + a[ve(wtvtvyvxctx) - ’U(}(.’Eht, Q)} (5)



3.3. Applications

As a standalone model, StylePitcher performs task-agnostic
pitch curve generation via conditional inpainting, supporting
style preservation or transfer across diverse singing applica-
tions without the need for re-training, as shown in Fig. [[[b).

Automatic Pitch Correction Given off-key singing with FO
Toff, NOLES Yofr, UNvoiced sequence Uy, and target notes Y,
we construct the input as = (x, 0) and generate & condi-
tioned on y = (Yofr, Yin) and u = (Uofr, Uofr). The corrected
pitch Zj, is obtained from the latter portion of &, preserving
the original singing style and matching the target notes.

Zero-Shot SVS with Style Transfer Given reference singing
(Zref> Yref» Urer) and target content from an SVS model (2,
Ygt> Ugt), WE concatenate the three sequences and mask the
target segment X StylePitcher then generates i that
aligns with the target notes while following the reference
style, which replaces @ for SVS synthesis.

Style-informed SVC Unlike previous SVC models using
unchanged FO, we modify pitch contours to capture singing
style. Given reference and target audio features concatenated
a8 & = (Trer, Tg) With corresponding y and w, we mask and
regenerate g to obtain g, enabling the converted singing to
transfer both timbre and pitch style while preserving content.

4. EXPERIMENTS

4.1. Datasets and Data Processing

For training, we employ two multi-speaker singing datasets,
DAMP-VSEP [23]] and DAMP-VPB [24], totaling 1916 hours
of singing voice. For evaluation, different test sets are used
depending on the task: (1) Samples from Diff-Pitcher [4]] for
pitch correction; (2) GTSinger [25]] for singing voice synthe-
sis and conversion; (3) VocalSet [26] for technique diversity.

We adopt RMVPE [27] for FO estimation and unvoiced
detection (16 kHz, 1024 frame size, 160 hop size); Basic
Pitch [28] for MIDI extraction. Empirically, we replace the
multi-pitch activation of Basic Pitch with that of RMVPE to
obtain more accurate MIDI extraction results. The output FO
spans C/ (32.7 Hz) to B6 (1975.5 Hz), covering M = 72 note
classes. Audio is pre-processed with vocal separation and de-
noising before FO extraction. We observe that the extracted
MIDI still contains style information expressed as short notes.
To remedy, we apply Gaussian blur on the multi-pitch activa-
tion map to smooth expressive techniques (e.g., vibrato) and
post-process by removing short rests and notes.

4.2. Experimental Setting

We use an 8-layer, 8-head diffusion transformer (DiT) with
512 hidden dim. and rotary position embeddings [29], to-
taling 49M parameters. The maximum sequence length is

Models | RPAT PCAT OA?T | Acc. |
Diff-Pitcher | 67.37 6740 7030 | 69.43
StyleSinger - - - 71.48
StylePitcher | 68.64  68.74 73.04 | 51.85
—wlosmo. | 69.49  69.61 73.61 | 52.71
—wloctx. | 6671  66.82 7134 | 52.12

Table 1. Objective evaluations (%) on GTSinger dataset.

N=1024 frames (20.48 seconds at 50 Hz). We apply co-
sine schedule [30] to focus on lower ¢ values, mask 7% of
sequences for infilling (r ~ U[70,100]), and set CFG drop
probability p. = 0.5. Pitch curves and notes are augmented
by random shifts within [—4, 4] semitones. The model is pre-
trained for 100k steps without unvoiced conditioning (learn-
ing rate le-4) and fine-tuned for 90k steps with it (le-5),
using Sk-step linear warm-up, AdamW [31]] optimizer, co-
sine scheduler, and batch size 512. Training is done with
FlashAttention-2 [32]]. During inference, we use the midpoint
solver of torchdiffeq [33] with K=16 steps and CFG scale
a=1.25. Generated FO curves can be interpolated to match
the expected FO sampling rates for downstream singing tasks.

4.3. Baselines and Metrics

We compare against three baselines to evaluate generated
pitch curves under task-specific settings, focusing on style
capture ability: (1) Diff-Pitcher [4] for APC; (2) StyleSinger [9]
for zero-shot SVS with style transfer; (3) an in-house SVC
model using unchanged FO. We evaluate only their pitch pre-
diction modules where applicable. Two ablations are included
to assess the proposed smoothing algorithm (w/o smo.) and
the inpainting setting (w/o ctx., with mask m = 0).

For objective metrics, we measure pitch alignment E] us-
ing Raw Pitch Accuracy (RPA, within half-semitone), Raw
Chroma Accuracy (RCA, octave-invariant RPA), and Overall
Accuracy (OA, including non-melody frames) [34]. To as-
sess overall similarity, we train a 2-layer LSTM model on the
curves and report classification accuracy (Acc.) between gen-
erated and ground-truth pitch, where lower values indicate
higher similarity. These metrics are evaluated on the Chi-
nese GTSinger set [25]], unseen by all compared models.

For subjective evaluation, we conduct an online listening
test on all three tasks. Participants first listened to the off-key
voice (APC) or reference singing tracks (SVS/SVC), then
rated generated samples from different models on 5-point
Likert scales in three aspects: (1) pitch correction accuracy
(APC only); (2) style preservation (APC/SVS) or capture
(SVO); (3) overall quality. For SVS, we evaluate only cases
where reference content remains unchanged. We collected
19 responses from participants with diverse musical back-
grounds, yielding 76 ratings per task per model per aspect.

2StyleSinger is excluded because annotated scores are not perfectly
aligned with the audio.



Models APC SVS SvC
MOS-P MOS-S MOS-Q MOS-S MOS-Q MOS-S MOS-Q
“Baselines Diff-Pitcher [4]] StyleSinger [9]] In-house SVC
4.18+021 3.384+020 3.0940.18 | 3.21+022 3.07+0.19 | 2.62+023 3.03+0.22
StylePitcher | 3.844022 3.64+020 3.26+0.18 | 3.33+0.23 3.114023 | 2.954+025 2.72+0.22
—w/osmo. | 3.66+024 3.39+0.19 3.04+0.19 | 3.45+021 3.18+021 | 2.72+022 2.64+0.23

Table 2. Subjective evaluations on three singing tasks. *Baselines correspond to Diff-Pitcher, StyleSinger, and the in-house
SVC for their respective tasks. MOS-P, MOS-S, and MOS-Q refer to mean opinion scores for Pitch, Style, and Quality aspects.

5. RESULTS AND DISCUSSIONS

5.1. Objective Evaluation

Table |1| shows that StylePitcher outperforms all baselines
across pitch alignment and similarity metrics. Notably, the
LSTM classifier achieves near-random accuracy (50%) when
distinguishing our generated curves from real ones, demon-
strating the effectiveness of rectified flow for modeling con-
tinuous signal. The ablation without smoothing achieves
slightly better alignment metrics by adhering more strictly
to musical scores, while removing context degrades perfor-
mance, confirming the benefit of in-context learning.

5.2. Subjective Evaluation

Table 2] presents human evaluation results across three tasks.

Automatic Pitch Correction StylePitcher better preserves
singing style and audio quality than Diff-Pitcher [4], though
with lower pitch correction accuracy. As shown in Fig. fa),
our method maintains expressive elements like pitch slides
while correcting notes, producing more personalized correc-
tions rather than enforcing strict alignment.

Zero-Shot SVS with Style Transfer Despite never training
jointly with synthesis frameworks, StylePitcher achieves su-
perior style capture compared to StyleSinger [9]] and main-
taining comparable audio quality. Fig. 2[b) also demonstrates
that our method effectively captures vibrato and glissando
characteristics that StyleSinger misses, validating its poten-
tial as a plug-and-play module for enhanced expressiveness.

Style-informed SVC Unlike the baseline using unchanged
FO, StylePitcher successfully transfers both timbre and singing
style. Fig.[2[c) shows the transformation of a flat target curve
into one with strong vibrato from the reference. However,
applying expressive techniques without content awareness
can occasionally produce unnatural results, impacting audio
quality. We leave resolving this limitation to future work.

These results validate StylePitcher as an effective general-
purpose pitch generator that balances pitch accuracy with
style capture across diverse tasks, enabling expressive singing
applications without task-specific training.
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Fig. 2. Samples for three singing tasks. StylePitcher (red)
captures singing styles better from input curves (blue) than
baselines (green), such as pitch slides (a) and vibrato (b&c).

6. CONCLUSION

We presented StylePitcher, a general-purpose pitch gener-
ation framework that captures and transfers singing styles
through masked infilling with rectified flow. Without task-
specific training or manual annotations, our DiT-based model
achieves superior performance across automatic pitch correc-
tion, singing voice synthesis, and voice conversion. Its plug-
and-play design enables immediate deployment in existing
systems. Future work will explore content-aware generation
and extend to other performance parameters for comprehen-
sive style modeling.
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